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ABSTRACT

Musicology research suggests a correspondence between
manual gesture and melodic contour in raga performance.
Computational tools such as pose estimation from video
and time series pattern matching potentially facilitate
larger-scale studies of gesture and audio correspondence.
We present a dataset of audiovisual recordings of Hindus-
tani vocal music comprising 9 ragas sung by 11 expert per-
formers. With the automatic segmentation of the audiovi-
sual time series based on analyses of the extracted F0 con-
tour, we study whether melodic similarity implies gesture
similarity. Our results indicate that specific representations
of gesture kinematics can predict high-level melodic fea-
tures such as held notes and raga-characteristic motifs sig-
nificantly better than chance.

1. INTRODUCTION

Manual gesturing by singers is an integral part of vocal
music performances in the Indian classical traditions. Pre-
vious work has demonstrated that singers’ gestures have
several different referents and functions: for example, they
may relate to the rhythmic structure of the music (marking
a steady beat or tala cycle) or play a role in signalling to co-
performers or audience members, as well as appearing to
accompany or illustrate aspects of the melody being sung.
In the latter case, hand movements sometimes appear to
correspond to pitch height (i.e. ascending pitch co-occurs
with one or both hands rising and/or moving to one side);
at other times they relate to other aspects of melody, such
as the tension felt while sustaining certain notes, or the im-
age or abstract design visualised by the performer [1–5].

Little computational work has been carried out on
gesture-to-audio correspondence in Hindustani vocal mu-
sic. Paschalidou [6] carried out research on a motion cap-
ture dataset of solo alap recordings in the dhrupad genre,
looking at a range of movement and audio features in re-
lation to the concept of ‘effort’: although she found cor-
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Dataset Singers Ragas Pakad Alap Dur(min)
Study in [7] 3 (1M,2F) 9 37 55 193
Current Work 11(5M,6F) 9 109 199 664

Table 1: A summary of the newly augmented audiovisual
dataset compared with that of closest previous work [7].

respondences, generalising across performers proved chal-
lenging.

Clayton et al [7] explored the use of movement data to
classify 12-sec excerpts drawn from a corpus comprising
3 singers performing 9 common Hindustani ragas in the
khyal genre. The use of solo alap meant the gestures can-
not refer to either metric structure or interaction with co-
performers, and thus relate predominantly to the melody
of the ragas being presented. An inception block preceded
by independently trained convolution layers for each of
audio and gesture time series classification provided the
best performance in the context of singer-dependent raga
classification, especially reducing the confusion between
melodically similar ragas with respect to the otherwise
high-performing audio-only classification. While the work
demonstrated the complementarity of gesture and melodic
profiles in relation to raga identity, we are more interested
in the present work in understanding which characteris-
tics of gesture correlate with specific melodic character-
istics. Further, given that the dataset of [8] was limited to
3 singers and therefore not suited to cross-singer studies,
we present here a considerably enlarged corpus with 8 ad-
ditional performers, collected following a similar method-
ology, as summarised in Table 1.

In the related Karnatak tradition, Pearson’s research has
looked at the role of gesture in vocal teaching [9]. The re-
lation between the acoustics and the kinematics was stud-
ied in recent work by Pearson & Pouw using the track-
ing of left and right wrist positions [10]. They manually
segmented the gesture tracks and studied the correspon-
dence of various kinematic extrema with the temporally
aligned changes in the acoustics (fundamental frequency,
or F0, and amplitude envelope). A correspondence was
established between the magnitudes of local peaks in ac-
celeration and changes in F0, in line with previous work in
co-speech gesturing [11].

In this work, we study the newly expanded corpus of



Figure 1: The overall testing and evaluation framework for the raga phrase-based segmentation. The audio and visual
components of a candidate AV segment (i-th segment from an alap) are separately compared with the respective audio
and visual components of a reference phrase segment (from a pakad) to see whether they are together consistent in their
estimation of similarity with the reference phrase. We note that the gesture T.S. (time series) is multidimensional while the
audio T.S. is a unidimensional sequence of F0 samples.

solo alap recordings. Since the same set of 9 ragas is per-
formed by all the singers (11 in this case), we can explore
commonalities in the gestures used by different singers for
particular raga-specific melodic movements. That is, in
contrast to the body of previous work, we use musically
motivated units, implied by the raga melodic structure, to
group the representations of melody and gesture. The aim
of the study is to investigate correspondences between the
singers’ movements (captured in the time series for x- and
y-coordinates of their wrist positions) and the melodies
they sing (represented as F0 contours).

Figure 1 depicts our overall framework. The melodic
phrase segments are obtained for each alap audio via a
subsequence search using a reference audio template (such
as a manually labeled phrase segment). The audio seg-
ment start and end times are then used to identify the cor-
responding time-synchronised video segment. The audio
and video segments are individually processed to compute
audio-based similarity and video-based similarity with re-
spect to the corresponding components of the AV (audio-
visual) reference template. We now seek to quantify the
extent to which video-based similarity predicts audio simi-
larity. We simplify the evaluation task to comparing, across
the two modalities, the following binary labels: L (i.e.
close to, or Like, the reference) or U (Unlike the refer-
ence).

In the next section, we provide the details of our dataset.
This is followed by a discussion of the audiovisual segmen-
tation methods. The experiments and results are presented
in the final two sections of the paper.

2. DATASET AND PREPROCESSING

We consider our dataset of vocal alap performances by 11
professional musicians performing 2 alaps each of 9 ragas.
Each alap is about 3 minutes long. The singers also con-
tributed shorter ‘pakad’ recordings, rendering some of the

key phrases of each raga in a brief format of a few sec-
onds. The total duration of this newly expanded dataset
(summarised in Table 1) is about 11 hours. Each piece
was recorded using three video cameras and separate mi-
crophone; only the central camera is used in the current
analyses. While each alap is labeled only by singer and
raga, we carry out further manual annotation of the pakad
audio files for selected raga phrases as used in this study.
That is, all the pakads of a given raga across the 11 singers
are searched for instances of the desired phrase (e.g. gmD
in raga Bageshree). This task, carried out by a musician, is
facilitated by the fact that the pakad is almost always sung
with solfege (unlike the alap).

Our audio and video processing pipelines closely follow
those of [7]. An initial stage of audio suppression of the
background drone is obtained via source separation [12].
The suppression, while not complete, is adequate for the
reliable estimation voicing and pitch at 10 ms intervals us-
ing monophonic pitch detection based on short-time au-
tocorrelation analysis [13]. Brief unvoiced regions (less
than 400 ms) arising from short breath pauses and con-
sonant utterances are filled in via cubic spline interpola-
tion to obtain the continuous pitch contours associated with
melodic movements that are bounded by silence (>400 ms)
on both ends. These are termed ‘Silence-Delimited Seg-
ments’ (SDS). The pitch contour is tonic-normalised using
an automatically detected (and manually verified) tonic to
obtain the F0 (cents) contour [14].

In order to extract the movement data, the central
video view of each piece is processed using the Open-
Pose pose estimation algorithm, which generates x- and
y-coordinates for 11 upper body joints [15]. We select the
right and left wrist coordinates. Any missing data are in-
terpolated and each of the time series is low-pass filtered to
remove jitter. The position time-series, originally sampled
at 25 fps is interpolated to 100 samples/sec to synchronise



it with the sampled F0 contour. Other important low-level
human motion descriptors include velocity (rate of change
of the 2d position) and acceleration (rate of change of the
velocity) [16]. We derive velocity and acceleration profiles
from the 2d position time-series of each joint by computing
derivatives. A robust estimate of the derivative is obtained
via a differencing kernel such as a biphasic filter with its
controllable smoothing parameters [17, 18]. We find that a
101-point filter achieves a lowpass filtering of about 2 Hz,
giving a sufficiently smooth and physiologically plausible
movement acceleration profile [19]. We eventually obtain
the 8-dim gesture time series of position (x and y), veloc-
ity and acceleration for each of the left and right wrists for
each of the singer-alap and pakad recordings. In this, we
include the synchronized F0 contour to get the complete
audiovisual time series for an alap, now in the form of a
sequence of SDS. A detailed review of the data collection
and processing appears in the supplementary material.

3. SEGMENTATION METHODS

The first stage of segmentation of the synchronised
AV time series comprises the silence-delimited segments
(SDS) obtained in the previous section. We discard seg-
ments of duration less than 500 ms as too limited for our
further analyses. The retained SDS, numbering approxi-
mately 30 per alap, have a mean duration of 5.2 s with less
than 1% (of the total count of 6012) exceeding 20 s. As
discussed next, we apply melodic segmentation principles
to each SDS to obtain stable note and raga-characteristic
melodic movements or phrases that can help us explore the
links between specific musical expressions and the corre-
sponding gestures.

In a top-down approach, the alap can be segmented into
its phrases. A raga phrase, although notated simply by its
solfege sequence, has a melodic-rhythmic realisation com-
prising specific intonations and durations of its constituent
svaras, together with the transitions to/from neighbouring
svaras [20]. On the other hand, in a bottom-up approach,
the melodic contour can be viewed as comprising the fol-
lowing broad categories of segments: stable notes, and the
transitions between the notes which can include distinc-
tive melodic ornaments such as glides (meend) and os-
cillatory movements (andolan) apart from steep changes
of pitch or pauses [21]. Figure 2 presents an example of
an SDS that comprises a variety of stable and transitional
sub-segments. It is therefore of interest to examine audio-
visual correspondences in the context of the distinct types
of melodic movements. The two different audio-based seg-
mentation procedures are detailed next.

3.1 Stable note segmentation

To identify occurrences of stable or sustained tones,
the continuous F0 contour corresponding to an SDS is
searched for instances in which the same raga note (svara)
is sustained for > 250 ms. That is, a stable note is de-
fined as a region where the F0 lies within a 25 cent interval
of the mean intonation of the raga note. This is based on

Figure 2: A sample SDS with identified steady notes
(shaded regions of blue F0 contour) and pitch salience dis-
tribution (on the left) computed from the entire alap audio
with detected svara locations highlighted.

past work that associated the similar duration and intona-
tion parameters with a listener’s percept of a held note [22].
Further, given that a svara may not be realised on the eq-
uitempered grid but rather with a raga-specific intonation,
we use a finely binned pitch salience distribution computed
across the alap to establish the svara locations [22]. Stable
note regions corresponding to the same svara that are sepa-
rated by less than 100 ms are next merged. The boundaries
of the so detected stable notes are shown in the example of
Figure 2. Across our alap dataset, stable notes were found
to range from 0.25 s to 9.9 s with a mean of 0.73 s.

In a similar vein, we considered the segmentation of an-
other characteristic melodic movement, the glide (or slide).
This has been attempted previously via the quality of a
linear fit to the F0 contour for Indian popular vocal mu-
sic [23]. However we found that the variety and complex-
ity of glide movements in raga music make it challenging
to develop a universal glide detection algorithm. We there-
fore resort to template-based phrase detection for the pur-
pose, as explained next.

3.2 Phrase-based segmentation

As depicted in Table 2, the raga motifs selected for our
exploration include a distinctive upward slide of an aug-
mented fourth in Shree, a falling slide of a fourth in Nand,
and a three-note ascending phrase in Bageshree. The cho-
sen phrases are highly characteristic of the corresponding
raga and occur in the raga alap with relatively unchanged
melodic shape, prompting the question about whether their
gesture executions also bear some measurable similarity.
The corresponding pakad phrases serve as templates for
the segmentation of the alaps for the chosen raga across
the 11 singers. We obtain a number of templates of the
given phrase from across the 11 singers’ pakads. The set
of templates represents the diversity in the realization of
the phrase across and within singers. This is manually re-
duced to a set of 6 templates per phrase while retaining the
diversity. Figure 3 shows a few examples for each of the
phrases chosen for the current study. We observe that the
simple notation used to represent the up or down slide (/,



Raga Svara (Notes) Phrase
Bageshree S R g m P D n gmD
Shree S r G M P d N r/P
Nand S R G m M P D N P\R

Table 2: The ragas and phrases used in this study. The
svaras S r R g G m M P d D n N correspond to the 12
notes of the Western chromatic scale with S representing
the tonic. The symbols / and \ denote the upward and
downward slide respectively [24], [25].

\) belies the complexity of contour shapes defined by raga
grammar. Also clear are the essential shape features that
point to the need for dynamic time warping (DTW) based
comparisons [26]. Next, the following steps (also visu-
alised in Figure 4) lead to the desired segmentation of the
alap audio files for each selected raga phrase.

1. The six phrase templates from the pakads are warped
to the same target length (that of the 3rd template in in-
creasing length order in the set) using a penalty parameter
that discourages large deviations from the diagonal path.
This helps to ensure that the subsequence DTW matching
costs can be meaningfully compared across the templates.

2. As shown in the middle panel of Figure 4, con-
strained DTW based subsequence search is executed on
each SDS with each of the 6 warped audio templates
(WAT) to obtain for each WAT the lowest cost match that
satisfies a duration criterion (> 0.5s) in order to avoid cases
of pathological warping [27]. Such matches are accepted
as valid and stored with the cost, temporal boundaries and
WAT index. In case no valid match is returned (in the top
20 retrieved responses) for a particular template, that SDS-
template is not considered further. This step leaves us with
between 1 to 6 best matched segments per SDS along with
the associated DTW costs.

3. Next, we pick the single lowest cost for each SDS
and use this value to cluster the entire set of SDS, across 22
alaps of the raga, into 2 clusters by fitting a kernel density
estimate (KDE) to the distribution of costs as shown in Fig-
ure 5 [28]. The cost value coinciding with the lowest point
in the valley between the peaks is used as a cost thresh-
old to label each SDS as one of the two classes:‘Like’ (i.e.
similar to the raga motif) and ‘Unlike’ (different from the
raga motif). These are the labels we would like to predict
from the corresponding gesture time series segments in the
context of our investigation of audiovisual correspondence.

4. In order to increase the number of examples for the
gesture-based prediction task, we club all the different tem-
plate matches obtained in Step 2 for the same SDS un-
der the same label. This was justified by our observation
that the SDS labeled Like (L) in Step 3 typically exhibited
similar low cost matches across all templates of the same
phrase. The SDS marked Unlike (U), on the other hand,
exhibited a relative wide spread in cost values above the
threshold, similar to that depicted in Figure 5.

Finally, with the audio segments computed in this sec-
tion, we extract the corresponding temporally synchro-

Figure 3: Sample templates for each of the three phrases:
gmD (purple), r/P (blue) and P\R (violet).

Figure 4: The pipeline for phrase-based segmentation us-
ing alap and pakad audio data. For warping the pakad
phrase templates, a window size of 100 and a penalty of
200 was chosen, while for the subsequence alignment, K =
20 and penalty = 0.1 were chosen [27].

nised gesture time series for each SDS and WAT pair. In
the next section, we report our experiments on testing vari-
ous kinematic features for the prediction of the correspond-
ing audio-derived labels in our two distinct tasks.

4. EXPERIMENTS

Past work on gesture kinematics in the context of speech
and singing co-gesturing has considered velocity and ac-
celeration parameters rather than the raw position time se-
ries with these parameters relating more directly to human
effort or force [10, 29–31]. We therefore include the (x,y)
position of each wrist as well as the corresponding ve-
locity and acceleration profiles across the segment as in-
put features for our two classification tasks. Summarising
the previous section, the gesture time series is segmented
based on the previously obtained audio segment bound-
aries giving us a time-aligned multidimensional time series



Figure 5: Distribution of the DTW subsequence cost
across the SDS of all singer alaps for the best matched
audio phrase template for P\R of raga Nand. The dashed
vertical line shows the threshold derived from the KDE fit
(dashed contour), using which the SDS are labeled as Like
and Unlike with reference to the template phrase.

for (i) each stable-note and non-stable segment across all
the alaps in the dataset, and (ii) each pakad phrase gesture
template and its audio-matched gesture segment from the
SDS. We consider supervised classification for each task
with the different features as discussed next.

4.1 Stable-note prediction

Stable note segments were labeled as such based on the
F0 variation across the segment as discussed in Section
3.1. We would like to investigate whether there is any con-
sistency in the gesture kinematics corresponding to stable
note regions. We implement a binary classifier trained and
tested on the dataset of labeled stable notes and the (com-
plementary) non-stable regions where the training and test
data are both drawn from across singers and ragas. Al-
though 250 ms regions of stable pitch qualified as stable
notes, we restricted the examples of both categories used
in this experiment to those with a minimum duration of 0.5
s in order to ensure that the training dataset was relatively
balanced. When the segment duration was constrained to
the range 0.5 s to 5 s, the stable notes constituted 39% of
the total examples, with across-singer variability as cap-
tured in row 2 of Table 3.

Postulating that gesture kinematics are relatively more
subdued during the stable note events, we investigate a
simple set of explicit features using a Support Vector Ma-
chine (SVM) classifier. We compute the statistical aggre-
gates of each of the velocity and acceleration in the form
of the mean and variance across the duration of the cor-
responding time series segment. We thus have 4 features
per wrist (i.e. 8 features in all) for the binary classifica-
tion of segments into stable and non-stable pitch events.
We carry out 10-fold cross-validation on the dataset and
report the F1 score for the detection of stable notes with
the SVM hyperparameters tuned to maximise the average
performance across the folds. This exercise is carried out
on the entire dataset as well as on singer-specific datasets,
where the corresponding counts of examples are provided
in Table 3.

4.2 Raga phrase detection

Our goal is to determine whether the L and U labels (that
were assigned based on audio proximity) can be predicted
by gesture alone at better than chance (i.e. based only on
the priors) and, if so, which kinematic features are most
useful in this task. Our measure of similarity is the DTW
distance computed between the template and test (i.e.the
alap SDS subsequence) time series. In the context of our
alap gesture time series, already segmented based on the
audio phrase matching, we now compute DTW distance
between the multidimensional reference and candidate un-
der test.

Multidimensional time series present us with some dis-
tinct options for the distance computation. Two obvious
approaches are DTWI and DTWD depending on whether
the individual time series are each warped independently or
whether they are all forced into a single warping path [32].
The use of DTWD appears meaningful for the incorpora-
tion of the velocity and acceleration contours derived from
the corresponding position time series of the wrists. How-
ever, it is interesting also to test with independent DTW
costs across the separate time series (to get an 8-dim fea-
ture vector of costs) to see if this helps reduce the effect of
the less informative features, if any. We term this DTWIND.
Further, decoupling the left and right wrists to obtained two
differently warped sets of time series (DTWLR) is also per-
fectly meaningful in the current task.

With DTW cost(s) as the input features, we create 5
train-test splits with the uniform distribution of singers
across the splits. Thus every example appears once in the
test set. We train a logistic regression classifier with L2
regularizer and use 3-fold cross-validation within the train
set to learn the best set of parameters.

5. RESULTS AND DISCUSSION

5.1 Stable-note detection

Table 3 presents classifier performance in terms of the F1
score for the retrieval of stable notes. We restrict ourselves
to the set of labeled segments of duration between 0.5 s
and 5 s, with 20897 examples in all. With 38.9% of these
corresponding to stable notes, we find that the obtained
F1 score is 65.7% when considering the overall dataset
across singers and ragas. Given the known high singer-
dependence of gesturing, we also evaluate singer-specific
classification with the same kinematic features, now re-
stricted to training and validation (10-fold CV as before)
on the smaller dataset of each singer’s alaps across ragas.

As anticipated, we note a large variation in the F1 scores
across singers in Table 3 but with all values considerably
above chance (which equals the corresponding % Stable
entry in row 2). While some of the variation could be at-
tributed to the differences in distributions of labels across
the singers’ datasets, we observe variation even across
singers with similar distribution characteristics (such as AP
and SM, for instance).

As for the singers with F1 scores well below the across-
singers stable note detection F1 score (such as the case of



Singer All AG AK AP CC MG MP NM RV SCh SM SS
Count 20897 1242 1987 2382 2274 1822 2111 1769 1563 2069 2083 1595
% Stable 38.9 53.6 36.7 44.1 34.0 51.5 47.3 32.8 34.7 22.5 43.6 30.1
F1 Score (%) 65.7 81.1 63.6 69.5 68.2 72.5 71.6 65.8 65.2 60.5 75.1 49.2

Table 3: Overall and singer-specific performances for stable note detection from segmented gesture time series across the
set of instances in the duration range [0.5, 5] s. Count indicates the number of instances in each singer (or overall) dataset.
The F1 scores in the final row may be compared with the values in the row 2 that correspond to the chance-level F1 score.

Phrase Like Unlike Chance Accuracy DTWD (1) DTWI (1) DTWInd (8) DTWLR (2)
gmD 944 827 50.2 52.2 48.6 51.8 52.4
r/P 1035 1268 50.5 55.3 47.1 56.1 55.1
P\R 817 1340 53.0 65.0 45.7 65.2 65.1

Table 4: Classification accuracy (%) for Like and Unlike phrase detection with gesture time series and different DTW
distance measures. Feature dimensionality (i.e. DTW path costs) appears in parantheses. Bold font indicates that the model
performance is significantly better (p<0.005) than chance, with the chance accuracy (%) also mentioned in the table.

SCh and SS), we note the relatively low proportions of sta-
ble notes in their data. Such behaviour can arise, for ex-
ample, when the singer makes a choice to focus more on
melodic movements in their alap rather than long periods
of held notes. With a relatively low representation of their
stable note examples in the training data, it is probable that
idiosyncratic aspects of their stable note gestures, if any,
were not learned by the classifier. We did not find much
of raga dependence in stable note detection performance.
We also did an analysis of tonic versus other stable notes
to find that the tonic notes (fewer in number overall) were
harder to detect; this observation needs more data for a bet-
ter understanding.

5.2 Raga-phrase detection

Table 4 displays the Like/Unlike classification of raga
phrases across the alaps of all singers. We see a roughly
equal proportion of L and U examples and therefore chance
baseline accuracies close to 50%. Both P\R and r/P exhibit
gesture classification accuracies that are statistically better
than chance for all versions of DTW distance except the
DTWI which is the simple summing of independent path
costs across the 8 different series. In the case of the gmD
phrase, we see a relatively small increase over chance with
the only significant difference provided by the DTWLR that
combines left and right wrist paths, each computed in-
dependently of the other. A singer-based breakdown of
the overall accuracy showed relatively uniform behaviour
across singers for all the phrases except for one outlier (out
of the 11) for each of P\R and r/P phrases.

We would also like to comment on the equal proportion
of L and U examples in our data for this task. Although
there is a far larger number of U instances (that is alap seg-
ments that probably do not contain the phrase of interest
and therefore expected to return a high cost in the DTW
subsequence search of the audio), we found that many of

Suppl. material: https://dap-lab.github.io/audioGestureCorrespondence/

these actually led to invalid paths from pathological warp-
ing and thus were unusable candidates for this study.

6. CONCLUSION

This work proposed a new approach to examining melodic
similarity captured in co-singing gestures by analysing au-
diovisual recordings. With a new dataset of 11 singers,
raga-characteristic phrases were proposed as a proxy for
similar melodic movements within and across singers. As
in previous work, wrist movements that accompanied the
solo alap singing were represented as kinematics time se-
ries. In the absence of ground-truth phrase labels for the
alap data, we developed a pipeline for achieving the AV
segmentation for the chosen phrases via DTW-based au-
dio template matching using a small set of hand-labeled
segments. We also considered the classification task for
more generic AV segments defined in a bottom-up man-
ner such as stable-note regions. Overall, our experimental
results indicate that there is significant kinematic informa-
tion linked to the selected melodic events, and confirm the
importance of computed velocity and acceleration profiles
in the gesture representation.

A useful contribution of this work is the musicological
questions it encourages. Apart from the aspects already
mentioned in the discussion of the results, we note that the
use of multiple phrase templates can facilitate larger exper-
imental validation of hypotheses, such as that of Rahaim
[5], that gestures could function to draw attention to what
is different between two semantically close melodic pat-
terns. Finally, several enhancements to the presented meth-
ods are possible including better-motivated movement fea-
tures, more keypoints (elbow and hand joints) and using all
3 camera views to include depth movement.

The authors S. Nadkarni and S. Roychowdhury contributed equally to this
work.
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